
On the theory of ®ssion gas bubble evolution in irradiated UO2

fuel

M.S. Veshchunov*

Nuclear Safety Institute (IBRAE), Russian Academy of Sciences, B-TulÕskaya 52, Moscow 113191, Russian Federation

Received 13 April 1999; accepted 7 June 1999

Abstract

The standard approaches for modelling of the intra- and intergranular bubbles evolution in the UO2 fuel are

critically analysed on the basis of available experimental data. It is demonstrated that the main disadvantage of the

simpli®ed treatment of the problem by the standard models can be associated with underestimation of the radiation

e�ects at low temperatures (below 1500°C) and thermal e�ects at high temperatures (above 1500°C). The presented

analysis allows a quantitative description of the bubble nucleation mechanism, adequate modelling of the bubble

di�usion growth, and evaluation of the intragranular bubble number density and stable size attained under steady

irradiation conditions. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The in¯uence of ®ssion gases generated in oxide fuels

during irradiation on fuel performance has been the

subject of many investigations over the past 40 yr. The

®ssion inert gases are known to precipitate into bubbles.

The growing bubbles cause the fuel to swell. In addition,

®ssion gas bubbles retained in the fuel on grain surfaces

and edges can cause radical changes in the fuel micro-

structure. These changes in the fuel microstructure can

then result in an enhanced gas release and fuel swelling.

Any model that attempts a realistic description of

®ssion gas release and swelling as a function of fuel-

fabrication variables and a wide range of reactor oper-

ating conditions must treat ®ssion gas release and fuel

swelling as coupled phenomena and must include many

mechanisms in¯uencing ®ssion gas behaviour. Current-

ly, the most advanced models which include the mech-

anistic description of these phenomena are the numerical

codes GRASS-SST [1], FASTGRASS [2], VICTORIA

[3]. These codes consider the e�ects of production of gas

from ®ssioning uranium, bubble nucleation, a realistic

equation of state for xenon, lattice gas di�usivities based

on experimental observations, bubble growth, migration

and coalescence, re-solution, temperature and tempera-

ture gradients, interlinked porosity, etc.

However, some of the code models seem to be

oversimpli®ed and do not allow a realistic description of

many observed phenomena. The basic assumption of

these models is connected with the bubble state de-

scription by the so-called `capillarity' relation and the

quasi-stationary approximation for the bubble growth

based on this relation. Such an approach radically sim-

pli®es the theory, since in this case the defect structure of

the crystal (including point defects, such as vacancies

and interstitials, and extended defects, such as disloca-

tions) is practically excluded from consideration (with

the exception of some simple e�ects such as athermal

behaviour of the gas and uranium atom di�usivities in

the irradiated crystal). However, this consideration is

well grounded only for the description of equilibrium

crystals and generally fails under irradiation conditions

when the fuel matrix is oversaturated with the point

defects (vacancies and interstitials).

In parallel to the fuel behaviour investigations, ex-

tensive experimental and theoretical studies of the metal

crystal behaviour under irradiation conditions were

carried out (e.g. [4±6]). Results of these investigations

unambiguously demonstrated a great in¯uence of point
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defects generated under similar (to the fuel) irradiation

conditions on the bubble nucleation and growth in

metals. However, these results were mainly unaccounted

in the models dealing with the bubble porosity evolution

in the oxide fuel, despite the general character of many

theoretical conclusions.

In the present paper an attempt is made to extend the

general approach of the irradiated metal description to

the modelling of the bubble behaviour in the UO2 fuel.

It is demonstrated that in some cases the standard ap-

proach for the bubble behaviour in the fuel (based on

the capillarity relation) can be really used (for example,

at high temperatures above 1500°C). However, in other

cases a more realistic description of bubble interactions

with non-equilibrium point defects must be applied.

Hence, the radiation e�ects unaccounted in the models

[1±3] become especially important in the case of the large

bubbles evolution (observed on the grain faces and, after

temperature transients, in the bulk of the grains), since

in these cases the mechanism and rate of the fuel

swelling and gas release through the open porosity may

be strongly underestimated by the standard approach

(see Sections 2 and 5).

Naturally, a similar approach to the metal descrip-

tion leads sometimes to quite di�erent results for the

fuel, since many parameters of the two systems di�er

signi®cantly. For example, the mechanism of small

bubble interactions with ®ssion fragments in the fuel,

associated with the bubble relaxation in the short living

(�10ÿ11 s) molten zone of ®ssion tracks (considered in

Section 2), can strongly change the intragranular po-

rosity evolution. Or, a relatively small value of the self-

di�usion coe�cient in the fuel (in comparison with that

in metals) leads to a signi®cant extension of the initial,

so-called `recombination' stage of irradiation when the

main sink of point defects is their mutual recombination.

As a result, this allows the direct calculation of the

bubble nucleation factor (determined in the codes [1±3]

as a default value varying in a wide range), or a natural

explanation of the stabilisation of the bubble number

density observed under steady irradiation conditions

at T 6 1500°C and its self-consistent calculation

(Section 3).

On the other hand, in the case of high temperatures

( P 1500°C) when radiation e�ects in the fuel can be

mainly neglected, the codes [1±3] generally underesti-

mate thermal e�ects in the fuel, namely, they do not

consider the thermal resolution of gas atoms from

bubbles. These e�ects strongly in¯uence the bubble

nucleation mechanism which, at these temperatures,

becomes associated with the ¯uctuation formation of a

®nite size critical nucleus as well as the bubble evolu-

tion in a late stage of irradiation when the thermal

resolution apparently determines the observed

stabilisation of the bubble radius and number density

(Section 4).

2. Intragranular porosity

Electron microscope examinations as well as con-

ventional optical metallography, scanning electron mi-

croscopy and replica techniques, of uranium dioxide

irradiated to doses P 1019 ®ssions/cm3 at temperatures

in excess of 800°C have shown high concentrations

(1017±1018 cmÿ3) of small intragranular ®ssion gas bub-

bles. The distribution of the ®ssion gas bubbles is of

interest because it in¯uences swelling and gas release.

For example, in conditions in which the gas does not

precipitate or forms very small bubbles, the gaseous

component of swelling will be less than in the case of

large (low pressure) bubbles. The precipitation of in-

tragranular gas bubbles will reduce the gas atom con-

centration in the lattice and will reduce gas release by

atomic di�usion.

2.1. Standard approach

In the majority of the currently existing models for

the ®ssion gas behaviour in the UO2 fuel, the mechanical

equilibrium state with respect to surface capillary forces

of bubbles is expressed by the capillarity relation:

p ÿ ph � 2c=R; �1�

where p is the internal gas pressure, ph the external hy-

drostatic pressure, R the radius of the bubble, c the

surface energy, is the usual approximation for the de-

scription of the growing intragranular bubbles (e.g. see

[1±3,7±9]). In the case of the deviation from this state,

for example, due to coalescence of two bubbles, it is

proposed that the newly formed bubble quickly attains

the equilibrium state after some characteristic relaxation

time by the vacancy di�usion mechanism. This approach

is usually based on the kinetic equation for the di�u-

sional growth of bubbles [10]:

dR=dt � �Du=R�f1ÿ exp ��p ÿ ph ÿ 2c=R�X=kT �g; �2�

where Du�Dvcv is the U atom self-di�usion coe�cient,

Dv and cv the vacancy di�usion coe�cient and bulk

concentration, respectively; X is the vacancy volume in

the UO2 matrix (X � 4.1 ´ 10ÿ23 cm3). In accor-

dance with Eq. (2) the quasi-stationary state of a bubble

(dR/dt� 0) is characterised by the capillarity relation,

Eq. (1).

2.2. Correct description

However, such an approach becomes incorrect in

many cases, since Eq. (2) is valid only for the equilibri-

um crystals, i.e. when the concentration cv of vacancies

does not exceed the thermal equilibrium value

ceq
v . Otherwise, for crystals oversaturated with the
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non-equilibrium vacancies, a more adequate expression

has the form [11]

dR=dt � �Du=R�f1ÿ �ceq
v =cv�

exp ��p ÿ ph ÿ 2c=R�X=kT �g; �3�

thus, the capillarity relation, Eq. (1) does not correspond

anymore to the quasi-stationary state (dR/dt� 0) if (ceq
v /

cv)� 1. Moreover, under irradiation conditions the

bubble growth is determined also by the di�usion of the

non-equilibrium interstitials and the correct expression

takes the form [4,5]

dR=dt � �Du=R�f1ÿ �bi=bv� ÿ �ceq
v =cv�

exp ��p ÿ ph ÿ 2c=R�X=kT �g; �4�

where bi�Dici, bv�Dvcv, Di and ci are the interstitial

di�usion coe�cient and bulk concentration, respective-

ly. This equation can be also rewritten in the form

dx=dt � Dux1=3�3X=4p�ÿ2=3�1ÿ bi=bv�f1ÿ �ceq
v =cv�

�1ÿ bi=bv�ÿ1
exp ��p ÿ ph ÿ 2c=R�X=kT �g; �5�

where x is the amount of vacancies comprising the void,

i.e. x� (4/3)pR3/X.

As it will be shown below, at T < 1500°C the value of

(cv/ceq
v ) attains several orders of magnitude (e.g. (ceq

v /

cv)� 10ÿ4 at T� 1000°C), whereas (1)bi/bv)� 10ÿ2.

Therefore, the application of the capillarity relation,

Eq. (1) becomes invalid under these conditions, since the

quasi-stationary state of a bubble (dR/dt� 0) derived

from Eq. (5) corresponds to a new relationship:

�p ÿ ph ÿ 2c=R�X � ÿkT ln��cv=ceq
v ��1ÿ bi=bv��: �6�

At 1000°C the di�erence between Dp� p)ph and the

capillary pressure 2c/R is negative (i.e. corresponds to

depressurised bubbles) and attains � 10kT/X � 10 GPa,

and continues to increase with the temperature decrease

(along with the increase of (cv/ceq
v )).

At T > 1500°C, as shown below, the radiation-in-

duced concentration cv really does not exceed the ther-

mal equilibrium value ceq
v ; thus, Eq. (2) becomes valid at

high temperatures. However, at T 6 1500°C, applica-

tion of Eq. (4) instead of Eq. (2) for the bubble growth

can strongly change the kinetics of the intragranular

porosity evolution.

In order to demonstrate this statement, it is su�cient

to consider the behaviour of a solely growing bubble

during a time interval between two subsequent collisions

with other bubbles. It should be noted that the Brown-

ian mobility of bubbles is considered in many theoretical

papers to be signi®cant (mainly on the basis of obser-

vations [12]), leading to a relatively high frequency of

mutual collisions. However, in the subsequent tests [13]

it was clearly demonstrated, that at T 6 1800°C the

Brownian motion of bubbles is negligibly slow, owing to

the high facetting of their surface (and/or to the `5-metal

particles' attachment invariably observed in large bub-

bles [14]). Therefore, the time between two subsequent

collisions of a bubble (in the absence of temperature

gradients in the grain) is really very large. In this case the

analysis of the growing bubbles behaviour can be per-

formed on the basis of Eqs. (2) or (5) along with the

corresponding kinetic equation for the number of gas

atoms N in a bubble:

dN=dt � 3Dgcg�3X=4p�ÿ2=3x1=3

� �1ÿ NKg�3X=4p�2=3
=�3Dgcgx1=3��; �7�

where Dg and cg are the gas atom di�usion coe�cient

and bulk concentration (number of gas atoms per U

atom), respectively, Kg is the rate of the radiation-in-

duced resolution of gas atoms from a bubble; and with

the Van-der-Waals equation of state:

p�xXÿ bN� � NkT ; �8�

where b� 8.5 ´ 10ÿ23 cm3/atom is the Van-der-Waals

constant for the Xe gas. Since b is very close to 2X, in the

following consideration Eq. (8) will be represented in the

simpli®ed form:

pX�xÿ 2N� � NkT : �80 �

For small bubbles, however, the Van-der-Waals ap-

proximation might be too rough [15] and a more realistic

equation of state (EOS) should be used in the numerical

calculations. In the present paper in order to perform

analytical calculations and/or estimations, this (Van-der-

Waals) approximation will be applied.

It should be noticed, however, that Eq. (7) based on

the usual consideration of the gas subsystem in the

models [1±3], lacks a term corresponding to the thermal

resolution of gas atoms from bubbles. Neglection of

such a term is often grounded, however, in many im-

portant cases it does not allow a correct description of

the system behaviour (in particular, at T P 1500°C, as

shown below in Section 4).

2.3. Qualitative analysis of bubble evolution

It is rather illuminating to perform the analysis of the

two di�erential equations (in the simplest case, Eqs. (2)

and (7)) in terms of the phase portrait of the system,

Fig. 1 (compare with [5, 16]). Intersection of two nodal

lines dx/dt� 0 and dN/dt� 0 determines a critical point

I of the stable node type, i.e. particles (gas atoms (N) and

vacancies (x)) move toward the node from all quadrants

in the neighbourhood. In the case of applicability of the

ideal gas law (instead of more realistic Eq. (8)) the nodal

lines are described by relationships N/ x2=3 and

N/ x1=3, respectively. The critical point apparently de-

termines the radius of the stable bubbles and explains

the validity of the `bimodal' bubble size distribution,
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observed in the steady-state tests and usually repre-

sented by the models based on Eqs. (2) and (7). When a

bubble deviates from this stable state, di�usion ¯uxes of

the gas atoms and point defects arise which return the

bubble back to the initial state.

For small bubbles with R < 5 nm corrections to the

ideal gas law become valid, and in the Van-der-Waals

approximation for very small bubbles with R� 1±2 nm

the nodal line dx/dt� 0 can be satisfactorily described

by the limit expression x� (b/X)N� 2N. In this case the

radius of the stable bubble determined by the intersec-

tion of the two nodal lines (i.e. the critical point I) is

RI � �6Dgcg=Kg�1=2
: �9�

In the case when Eq. (2) is substituted by Eq. (5), the

nodal line dx/dt� 0 is described by the equation [16]

N � �x ln�Se� ÿ Ax2=3�=f�b=X�� ln�Se� ÿ Axÿ1=3� ÿ 1g;
�10�

where Se� (cv /ceq
v )(1)bi/bv), A� (2/3)(36pX2)1=3/kT, and

changes its form with temperature decrease, Fig. 2. At

some temperature below 1500°C (i.e. when Se > 1) the

second critical point II (of the saddle type) appears

which can be reached from the ®rst critical point only

due to thermal ¯uctuations and/or collisions of bubbles.

Along with a further temperature decrease the two

points approach each other and ®nally disappear. For

the above presented values of the parameters (ceq
v /

cv)� 10ÿ4 and [1)(bi/bv)]� 10ÿ2 attained at T� 1000°C,

the critical points are knowingly absent, Fig. 3. In this

situation bubbles grow unrestrictedly (along the dashed

line in Fig. 3). This is generally in contradiction with

observations [17±20], which is evidence that the size of

bubbles stabilises (R� 0.5±1 nm) the growth in some

period of time in the reactor steady operation regimes in

a wide temperature interval (from 800°C to 1800°C).

2.3.1. Small bubble relaxation mechanism

The main reason for this discrepancy of the theory

with observations is apparently connected with an un-

accounted additional physical mechanism of bubble in-

teractions with ®ssion fragments. Up to now such

interactions were considered only in the equation for the

gas subsystem (i.e. Eq. (7)) in the form of the radiation-

induced resolution of gas atoms from bubbles. However,

one should also take into consideration interactions of

®ssion fragments with the vacancy subsystem which

becomes especially important for small bubbles (R� 1

nm). Indeed, in accordance with the contemporary mi-

croscopic theory of the material interactions with high

energy ®ssion particles (see, for example, [21]), molten

zones appear in the ®ssion fragment tracks during some

Fig. 2. Nodal lines in the case of non-equilibrium crystal

oversaturated with point defects. Two critical points I (stable

node) and II (saddle point) are indicated.

Fig. 3. Nodal lines and trajectory of growing bubbles (dashed

line) in the absence of critical points (corresponding to the low

temperature case in Fig. 2).

Fig. 1. Schematic diagram of nodal lines in the simplest case of

ÔcapillaryÕ bubble evolution. Velocity vectors and the critical

point I (stable node) are indicated. x, N are amounts of va-

cancies and gas atoms, respectively, comprising a bubble.
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short time interval s*� 10ÿ11 s. Despite the apparent

smallness of this time interval, it appears to be large

enough for high temperature annealing of a small bub-

ble with R� 1 nm and its (partial) relaxation to the

equilibrium state in the molten zone of the track with

diameter �10 nm. Such a state in the liquid phase is a

mechanically equilibrium bubble described by the cap-

illarity relation, Eq. (1), and the relaxation time to this

state can be estimated as sr�R/vs, where vs is the sound

velocity in the melt. This estimation can be deduced in a

similar way to the solution of the problem of an empty

void shrinkage in the incompressible liquid [22] by

generalisation to the case of a gas ®lled void, [23].

Assuming vs� 103 m/s, R� 1 nm, one gets sr�
10ÿ12 s 6 s*.

The simplest way to account for this mechanism is the

introduction in Eq. (5) of an additional term, describing

bubble relaxation as a result of its collisions with ®ssion

fragments. Under the assumption that the path volume

Vtr is equal to pr2
trL, where rtr� 5 nm, L� 6 ´ 10ÿ4 cm are

the track radius and length, respectively, a mean time

between collisions of a small bubble with particles is es-

timated as s0� (2VtrF)ÿ1 � 102 s, where F� 1013 sÿ1 cmÿ3

is the ®ssion rate [21]. Correspondingly, an additional

term Kv(x ) xL(N)) is introduced in Eq. (5), where Kv µ
sÿ1

0 , and xL(N) corresponds to the capillarity relation

expressed in terms of the values x and N. In the consid-

ered case of small bubbles with R 6 1 nm this relation is

completely determined by the Van-der-Waals constant

b� 8.5 ´ 10ÿ23 cm3 and can be reduced to the form xL(N)

� (b/X)N � 2N. A proportionality factor in the relation

Kv µ sÿ1
0 may signi®cantly di�er from 1 re¯ecting the

probability of incomplete relaxation of a bubble during

short-term (s*� 10ÿ11 s) annealing in the molten zone of

a track. Finally, one gets instead of Eq. (5):

dx=dt � Du�3X=4p�2=3x1=3�1ÿ bi=bv�f1ÿ �ceq
v =cv�

� �1ÿ bi=bv�ÿ1
exp ��p ÿ ph ÿ 2c=R�X=kT �g

ÿ Kv�xÿ xL�N��: �11�

Analysis of Eq. (11) shows that the additional term in

the r.h.s. recreates the critical point at the intersection of

the two nodal lines dx/dt� 0 and dN/dt� 0 and, thus,

leads to the stabilisation of the bubble radius in the

steady stage of irradiation also in the case of low tem-

peratures (see Fig. 4).

2.3.2. Large bubble evolution

It should be emphasised, however, that the above

proposed mechanism of small bubble annealing be-

comes invalid for bubbles with a diameter substantially

exceeding the width of the ®ssion particle tracks

(2R� 10 nm). Under steady irradiation conditions this

limitation is insigni®cant, since the radii of the bubbles

are stabilised and usually do not exceed �1±2 nm.

Under transient conditions the situation can radically

change. For example, it was observed in the tests [24]

that during a power transient the fuel temperature rises

rapidly, leading to the growth of large (10±500 nm

diameter) ®ssion gas bubbles. Such large bubbles can-

not be annealed in the molten zone of tracks and

probably conserve their dimension x or reduce it but

essentially less e�ectively (for example, by the vacancy

radiation resolution mechanism similar to the above

discussed gas atom resolution from bubbles). In this

case the system behaviour is again described by the

phase portrait similar to Fig. 3, i.e. large bubbles (with

R� 5 nm) formed during the transient period grow up

unrestrictedly, without any preference to the `capillary'

state.

Since in this case (in the absence of restrictions im-

plied by the capillarity relation, Eq. (1)) the gas atom

di�usion is not anymore the rate determining step of the

bubble growth kinetics, on the one hand, and owing to a

relatively small value of the gas atom ¯ux to the growing

bubble (µDgcg) in comparison with the e�ective ¯ux of

point defects (µDu(1)bi/bv)), on the other hand, bubbles

become essentially depressurised and grow up very

rapidly (along the dashed line in Fig. 3) in comparison

with the usually proposed evolution (along the nodal

line dx/dt� 0). In particular, this may lead to a signi®-

cantly larger and quicker swelling of fuel than usually

expected.

3. Irradiation e�ects

Essential factors determining the system behaviour

and entering in Eq. (3) are the non-equilibrium point

defect concentrations cv (vacancies) and ci (interstitials).

For their calculation one can use the rate theory con-

tinuum model of Brailsford and Bullough [25]:

Fig. 4. Nodal lines with account of the small bubble relaxation

mechanism (leading to the transformation of Fig. 3).
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dcv=dt � K � Ke ÿ Dvcvk2
v ÿ aDicicv;

dci=dt � K ÿ Dicik2
i ÿ aDicicv;

�12�

where K is the atomic displacement rate, Ke the rate of

thermal vacancy production, k2
v�i� the sink strength for

vacancies (interstitials), a the recombination constant

(�4prc/X, where rc� 0.1±0.5 nm). Under PWR reactor

normal operation conditions K�FzsX , where F is the

®ssion rate, zs� (1±5) ´ 105 is the damage formation in

the ®ssion track volume, X� 4.1 ´ 10ÿ23 cm3 is the

speci®c volume of the uranium atoms, thus, for the

typical value F� 1013 cmÿ3 sÿ1, one can estimate

K� 10ÿ5±10ÿ4 sÿ1.

If voids and dislocations are the only ®xed sinks:

k2
v � 4pqbR� Zvqd; k2

i � 4pqbR� Ziqd; �13�
where qb and qd are the void number and dislocation

density, respectively; the dislocation sink strength con-

stants Zv and Zi for vacancies and interstitials are of the

order of unity, but Zi is a few percent larger due to the

higher elastic interaction between dislocations and in-

terstitials, than with vacancies.

For the calculation of the bulk concentrations cv and

ci, the grain boundary sink strength k2
g:b: can be ne-

glected in comparison with the bulk sinks k2
v;i (after some

initial irradiation period when k2
v;i becomes >1010 cmÿ2),

since

k2
g:b:=k2

v;i � 3=�Rgkv;i� � 1;

where Rg is the grain radius [25].

In the steady state (dcv/dt� dci/dt� 0) the general

solution of Eqs. (12) is

ci � �Dvk2
v=2Dia��ÿ�1� l� � ��1� l�2 � g�1=2�;

cv � �k2
i =2a��ÿ�1ÿ l� � ��1� l�2 � g�1=2�;

�14�

where

g � 4aK=�Dvk2
i k2

v�; l � Keg=�4K� �14
0 �

3.1. Low temperatures, T61500°C

A T 6 1500°C, Ke�K; as it will be demonstrated

below. On the other hand, g occurs to be rather large

(�1) during a very long initial stage of the steady-state

period of irradiation. Indeed, at T� 1000°C Dv� 10ÿ11±

10ÿ12 cm2/s (see Eq. (18) and/or compare with data

presented in [26]), and the relationship g� 1 is valid

until the parameters k2
i , k2

v attain the value �1011±

1012 cmÿ2, i.e. practically up to the maximal observed

number density of the bubbles (with R� 1 nm),

qb� 1017±1018 cmÿ3. At higher temperatures (up to

1500°C) this relationship is valid in a slightly reduced

range of the parameter k2
v;i variation owing to some

possible increase (within one order magnitude, [26]) of

Dv. At lower temperatures (below 1000°C) the uranium

self-di�usion coe�cient Du becomes completely ather-

mal and independent of temperature:

Du � AF ;

where A� 1.2 ´ 10ÿ29 cm5 [25,26]; thus, Du� 10ÿ16 cm2/s

at the ®ssion rate F� 1013 cmÿ3 sÿ1. As shown below

(Eq. (18)), Dv becomes also temperature independent

and, thus, the applicability range of the relationship

g� 1 does not reduce. This is a rather important con-

clusion, since in this case the general solution, Eq. (14)

can be radically simpli®ed:

cv � �KXk4
i =4prck2

vk2
i Dv�1=2 � �KX=4prcDv�1=2

; �15�

Dici � Dvcv�k2
v=k2

i �; �16�
i.e. cv, ci become practically independent of the amount

of voids and dislocations in the crystal, since the mutual

recombination of the point defects dominates in this

stage. Owing to Du � Dvcv � Dici, ®nally one gets

cv � KX=4prcDu; �17�

Dv � 4prcD2
u=KX: �18�

Correspondingly, at T 6 1000°C (Du� 10ÿ16 cm2/s) one

gets cv� 10ÿ5, Dv� 10ÿ11 cm2/s. At higher temperatures

(up to 1500°C), Du increases slowly up to its thermal

value at 1500±1600°C, Du� 10ÿ15 cm2/s. Therefore, the

calculated value of cv reduces to �10ÿ6, i.e. cv attains its

equilibrium value at �1500°C, ceq
v � exp()2.2 eV/kT ) �

6 ´ 10ÿ7 [26].

3.1.1. Nucleation factor

It is important to notice that Eq. (17) allows the

calculation of the so-called nucleation factor FN, intro-

duced in many models as a default value (usually vary-

ing in a wide range 10ÿ4±10ÿ7) to determine the

probability that two gas atoms that have come together

actually stick and form a bubble [1±3]. It is easy to un-

derstand that for the stability of such a bubble at least

one vacancy must be located in the position of the two

atoms collision; otherwise, the formed bubble will im-

mediately disintegrate. This can be demonstrated if one

formally extends the bubble state equation, Eq. (8), to

small bubbles with N� 2. Indeed, it is generally accepted

now that gas atoms di�use in neutral trivacancies (i.e.

clusters of a U vacancy and two O vacancies), or

charged trivacancies (i.e. clusters of two U vacancies and

one O vacancy), rather than in single vacancies [25,26].

In the ®rst case (neutral trivacancies) at least three

additional U vacancies are necessary to form after

collision a stable bubble obeying a restriction of Eq. (8):

x/N P b/X > 2. Such an event has a very low probability

proportional to c3
v. However, in the second case (charged

trivacancies) only one additional vacancy is necessary.
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The probability that a vacancy is located in a certain

position (of a two atoms collision) is exactly equal to the

vacancy bulk concentration cv. In this case the nucle-

ation factor can be deduced from Eq. (17):

FN � cv � KX=4prcDu: �19�

Therefore, at T 6 1000°C

FN � zsX
2=4prcA;

or

FN � 10ÿ5 ÿ 10ÿ4; �20�

and at higher temperatures (up to 1500°C) FN smoothly

reduces within one order of magnitude (along with the

possible increase of Du):

FN � 10ÿ6 ÿ 10ÿ5: �21�

These values are in reasonable agreement with the de-

fault value FN � 10ÿ4)10ÿ7 accepted in Refs. [1±3].

Hence, this result can be considered as an indirect con-

®rmation of the charged trivacancy di�usion mechanism

of gas atoms in UO2 at high temperatures.

Above 1500°C the thermal equilibrium concentration

ceq
v should be used for evaluation of the nucleation fac-

tor:

FN � ceq
v � exp�ÿ2:2 eV=kT�: �22�

It should be kept in mind, however, that the obtained

results for the nucleation factor FN are valid until the

critical nucleus size is small in comparison with the

minimal bubble size, Rcr� 2c/(cgPs/cs) < (3X/p)1=3 (see

Section 4.2). Otherwise, the correct description should

be based on the calculation of the activation barrier for

the ¯uctuation formation of the critical nucleus (see

Section 4.3). Thus, Eqs. (20)±(22) are valid only in a

certain gas concentration range, attained during various

periods of irradiation (e.g. under steady irradiation

conditions they are not valid during some initial (`in-

cubation') period at each temperature and during a late

stage period at high temperatures, see Section 4.3).

3.1.2. Sink strengths

In order to calculate the parameter (1)bi/bv) at

T < 1500°C which at these temperatures is equal to

1)(k2
v/k2

i ) (see Eq. (16)) and, thus, becomes a small value

(�1), one should take into account that in this case an

additional problem of calculation of the dislocation

density qd (determination of the dislocation sink

strength Zi;vqd) arises. In the initial stage of irradiation,

when the bubble number density qb is low while the

dislocation density is ®nite and determined by the ori-

ginal state of the crystal (usually estimated as qd � 108

cmÿ2), 4pqbR�Zi;vqd; therefore, one gets k2
i � Ziqd, k2

v

� Zvqd, and 1 ) bi/bv � 1 ) Zv/Zi � 10ÿ2 from Eq. (13).

Along with the irradiation dose increase, the bubble

number density qb and dislocation density qd simulta-

neously increase. While the bubble sink strength 4pqbR

does not exceed the dislocation sink strength Zi;vqd , the

value 1 )bi/bv remains the same. From the analysis of

the equation for the radius RL of the growing interstitial

dislocation loops (with the Burgers vector b) [28]

dRL=dt � b1�ZiDici ÿ ZvDvcv�
� bÿ1ZvDvcv��Zi=Zv��k2

v=k2
i � ÿ 1�;

it is straightforward to see that while 4pqbR�Zi;vqd is

valid (i.e. k2
i � Ziqd, k2

v � Zvqd), the dislocation loop

growth is strongly suppressed (with respect to the bubble

growth):

dRL=dt / ��Zi=Zv��Zv=Zi� ÿ 1� ! 0:

In the opposite case of a large number density of bub-

bles, 4pqbR�Zi;vqd, and k2
i � k2

v � 4pqbR, the bubble

growth turns to be suppressed (with respect to the loop

growth), since from the equation for the growing bubble

radius:

dR=dt � Rÿ1�Dvcv ÿ Dici�;

in this case one can deduce

dR=dt � Rÿ1Dvcv�1ÿ k2
v=k2

i � ! 0:

Therefore, it is logical to assume that after some time the

relationship 4pqbR � Zi;vqd becomes valid, and the

further growth of the bubbles and dislocation loops

occurs self-consistently, in accordance with this rela-

tionship. In this case 1 )bi/bv remains �10ÿ2. Indeed,

this conclusion can be selectively con®rmed by some

data found in the literature. For instance, in the tests [24]

both densities qb and qd were measured after some pe-

riod of the steady irradiation: qb � 1016 cmÿ3, qd � 1010

cmÿ2, and the mean bubble radius R � 4 nm, thus, the

approximate equation 4pqbR � Zi;vqd was really valid.

After completion of the `recombination stage', g 6 1

and dislocations and bubbles become the main sinks

determining the steady-state concentration of the point

defects, i.e. Eqs. (15) and (16) become invalid. As al-

ready mentioned, at T 6 1500°C the transition to the

new regime occurs at a late stage of the steady irradia-

tion, when the bubble number density attains qb� 1017±

1018 cmÿ3. In the new regime the general steady-state

solution Eq. (14) can be reduced to the form

cv � K=k2
vDv; or K � k2

vDvcv � k2
vDu:

As already mentioned, at T 6 1000°C Du depends only

on the ®ssion rate F and does not depend on tempera-

ture. At higher temperatures (up to 1500°C) Du

smoothly increases within one order of magnitude.

Therefore, in the new regime k2
v attains the steady value:

M.S. Veshchunov / Journal of Nuclear Materials 277 (2000) 67±81 73



k2
v � K=Du � zsX=A: �23�

This value depends weakly on temperature, being k2
v �

1011±1012 cmÿ2 at T 6 1000°C and possibly reducing

within one order of magnitude at T 6 1500°C. More-

over, in all these cases k2
v corresponds to the maximum

value attained in the recombination stage (see Section

3.1). Indeed, after substitution of Eq. (18) in Eq. (14Õ)
one can see that the value k2

v�K/Du calculated in

Eq. (23) determines the upper limit of the recombination

stage providing g� 1.

This means that the maximum value of k2
v attained at

T 6 1500°C in the recombination stage is practically

®nal and does not increase anymore during the subse-

quent stage. Since k2
v;i� 4pqbR + Zv;iqd, and, as shown

above, 4pqbR � Zi;vqd, then the attained stabilised value

of the bubble number density is qb � 1017)1018 cmÿ3 (for

the bubbles with R � 0.5±1 nm), in a fair agreement with

experimental data for the number density observed un-

der steady irradiation conditions [17±20]. Thus, using

the most recent and reliable data [20] one can evaluate

4pqbR � 6 ´ 1011 cmÿ2 in a wide temperature range 900±

1700°C.

3.1.3. Bubble system stabilisation

In order to evaluate a relationship between the values

k2
v and R in the stage of the bubble system stabilisation,

an additional consideration of the gas atom conservation

should be carried out. In this stage all generated gas at-

oms di�use to the grain boundaries (without being cap-

tured by the stabilised, or `saturated' intragranular

bubble system), thus the balance equation takes the form

GX � k2
g:b:Dgcg;

where G� bF, b � 0.25 is the number of gas atoms

generated per one ®ssion, k2
g:b: � 3kv/Rgr an approximate

expression for the sink strength of the grain boundary

(under condition k2
v� k2

g:b:) [25], Rgr � 5 lm the grain

radius. Using Eq. (9) for the bubble radius, RI� (6Dgcg/

Kg)1=2, one gets a relationship for the radius Rst of the

stabilised bubbles:

Rst � �6Dgcg=Kg�1=2 � �2bXRgr=b0kv�1=2
; �24�

where b0�Kg/F is assumed �10ÿ18±10ÿ17 cm3 [29,30].

Thus, with temperature increase from 1000°C to 1500°C

the bubble radius slightly increases by a factor 1.5±1.8

(along with a k2
v decrease within one order of magni-

tude), 0.6 nm 6 Rst 6 1 nm, in reasonable agreement

with observations (e.g. [20]). Since k2
v � 4pRstqb, for the

total volume of bubbles Vb (per cm3) one gets

Vb � 4pR3
stqb=3 � 2bXRgrkv=3b0:

The stabilised volume calculated in this equation cor-

responds to the total amount (per cm3) of the gas atoms

in the bubbles cb � Vb/b � Vb /2X:

cb � bRgrkv=3b0 � 1019 atoms=cm
3
; �25�

in reasonable agreement with the measurements

[19,20,31]. In these tests performed in a wide tempera-

ture interval 1000±1700°C and various burnups exceed-

ing 2 ´ 1020 ®ssions/cm3, the total amount of gas atoms

in bubbles was �(1±3) ´ 1019 cmÿ3 and the radius of

bubbles was �0.6±1 nm.

It is interesting to note that this result can be used for

independent evaluation of the radiation resolution

factor b0. Using the experimentally measured value cb �
(1±3) ´ 1019 atoms/cm3, one obtains from Eq. (25)

b0 � bRgrkv=3cb � 10ÿ18±10ÿ17 cm3; �26�
in the above indicated measured temperature and irra-

diation ranges, that is in a reasonable agreement with

more direct (but relatively rough and performed for

large bubbles R 6 5±7 nm) measurements of Kg�Fb0 in

[29], Kg � 10ÿ5±10ÿ4 sÿ1.

The estimation of b0 obtained in Eq. (26) can be also

justi®ed by the following consideration. In the tests [20]

with a burnup of 2 ´ 1020 ®ssions/cm3, the gas concen-

tration in the matrix did not exceed the total generated

value 5 ´ 1019 cmÿ3, i.e. cg 6 2 ´ 10ÿ3, Thus, using the

®rst part of Eq. (24) for the 1000°C test (in which Rst �
0.5±0.6 nm and Dg � 8 ´ 10ÿ17 cm2/s [32]), one deduces

the upper limit for the radiation resolution rate,

Kg 6 3.2 ´ 10ÿ4 (or b0 6 3.2 ´ 10ÿ17 cm3, if F� 1013 ®s-

sions/(cm3 s)). At such a low temperature cg was really

very close to the total generated value 5 ´ 1019 cmÿ3,

since cb was evaluated in [20] as � 1 ´ 1019 atoms/cm3

(i.e. only �20%) and the gas content in the intergranular

bubbles is even smaller (10±15%) at this temperature

[33]; thus, the calculated upper limit Kg � (2±3) ´ 10ÿ4 sÿ1

should be very close to the real value.

This value practically coincides with the latest mea-

surements [30] and can be further used for the evaluation

of Dgcg from the experimental data [19,20,31] for the

bubble radius:

Dgcg � R2
stKg=6 � �2ÿ 5� � 10ÿ19 cm2=s: �27�

This equation determines the stabilised value of cg, if one

uses data for Dg from [32], which are generally accepted

and well con®rmed (for example, by recent measure-

ments [34]), see Table 1.

3.2. High temperatures, TP1500°C

At T P 1500°C the thermal e�ects dominate over the

radiation ones, Ke P K, and the general solution,

Eq. (14), self-consistently transforms into

cv � Ke=k2
vDv � ceq

v ;

Dici � Dvcv�k2
v=k2

i ��K=Ke� � Dvcv;
�28�

therefore, 1 ) bi/bv� 1 ) (Dici/Dvcv) � 1.
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In contrast with the low temperature case, Eq. (28)

does not imply any limitations to the value of k2
v.

Therefore, additional (thermal) mechanisms should be

considered in order to explain the observed stabilisation

of this parameter at high temperatures.

4. Thermal e�ects

As already mentioned in Section 2.2, an additional

term representing the thermal resolution of gas atoms

from bubbles is usually not considered in the equation

describing the behaviour of the gas subsystem, Eq. (7)

[1±3]. It will be demonstrated here, however, that at high

temperatures namely such a process determines the

mechanism of bubble nucleation, becomes responsible

for the observed stabilisation of the bubble number

density at a late stage of steady irradiation and signi®-

cantly in¯uences the gas system behaviour during high

temperature annealing of irradiated fuel.

4.1. Thermal resolution of gas atoms from bubbles

In the Van-der-Waals approximation the account of

the thermal resolution of gas atoms from a bubble

transforms Eq. (7) into the following one:

dN=dt � 3Dgcg�3X=4p�ÿ2=3x1=3

� �1ÿ �3X=4p�2=3NKg=�3Dgcgx1=3�
ÿ �p=pe�exp�b�p ÿ pe�=kT ��; �29�

where p� kTN/X(x ) 2N) is the bubble pressure (p�ph)

and pe the partial gas pressure in equilibrium with the

solid solution of gas atoms in the fuel matrix, which

determines the critical nucleus radius Rcr� 2c/pe. As-

suming HenryÕs law behaviour up to the terminal solu-

bility cs, one gets pe� (ps/cs)cg. However, the ratio (ps/cs)

is unknown, thus, it can be only roughly evaluated from

the available indirect data. It is known from the litera-

ture [35] that the solubility of He in UO2 measured in the

pressure range 5±10 MPa at 1200°C, yields (ps/cs) �
1.5 ´ 1012 Pa. On the other hand, for the ®ssion gas (Xe

and Kr) it can be evaluated on the base of observations

[36] that under steady irradiation conditions at

T� 1200°C visible bubbles appeared at burnup of

�3 ´ 1019 ®ssions/cm3, which corresponded to the gas

concentration ~cg � 3 ´ 10ÿ4. Assuming that a bubble

formed due to sticking of two atoms (see Section 3.1.1)

and continues to grow up if its radius R� (3X/p)1=3 ex-

ceeds the critical nucleus radius Rcr, one gets an esti-

mation at T� 1200°C: (ps/cs) � 3 ´ 1013 Pa. This value

will be used hereafter for quantitative estimations,

bearing in mind that it can increase with temperature in

accordance with the Arrhenius law. A similar conclusion

about the existence of the critical nucleus size associated

with the observed threshold value of the gas concen-

tration, was derived in Ref. [31].

4.2. Bubble system stabilisation at high temperatures

It is clearly seen that when the second (irradiation)

term in Eq. (29) dominates over the third (thermal) one,

the steady solution dN/dt� 0 determines the critical

point I, calculated in Eq. (9) and stabilised under the

condition of Eq. (27), Dgcg�R2
stKg/6. On the other

hand, when the third term dominates over the second

one, the steady solution determines the critical nucleus

size: Rcr� 2c/(cgps/cs). At temperatures 800±1000°C (Dg

� (2±8) ´ 10ÿ17 cm2/s [32], Rst � 0.5±0.6 nm [18,20]) the

value of cg attained under the stabilisation condition,

Eq. (27) is rather high, cg* � 10ÿ3±10ÿ2 and corresponds

to a very small value of Rcr* 6 0.1 nm. This means that

at low temperatures the irradiation induced resolution

always dominates over the thermal one. However, with

the temperature increase the value cg* decreases, leading

to the increase of the critical nucleus size Rcr* in the

stabilised state. Coincidence of the two radii RI* � Rcr*

� 1 nm occurs (assuming Kg � (1±3) ´ 10ÿ4 sÿ1, (ps/cs) �
3 ´ 1013 Pa) when Dg � (0.3±1) ´ 10ÿ14 cm2/s, i.e. at T �
1400±1500°C. At T P 1500°C, when the saturation

condition, Eq. (23), is not anymore valid, the bubble

system stabilisation occurs under the condition RI � Rcr,

which determines the value of the attained concentration

cg � (2c2Kgcs
2/3ps

2Dg)1=3 and corresponding radius R �
(12cDgcs/psKg)1=3.

With the temperature increase from 1500°C to

1700°C the di�usion coe�cient Dg increases approxi-

mately by one order of magnitude, leading to the critical

bubble radius increase Rcr / D1=3
g by a factor of 2. In

reality the observed increase of the bubble radius is

somewhat smaller (�1.3±1.5 times) [20]; this apparently

can be explained by the unaccounted Arrhenius depen-

dence of the factor (ps/cs) on temperature in HenryÕs law

for the solid solute of gas atoms.

In terms of the system phase portrait (see Section

2.3), the above described qualitative consideration can

be presented in the following way. As soon as the critical

nucleus size exceeds the interatomic distance, a new

critical point III (of the saddle type) appears at the in-

tersection of the two nodal lines, Fig. 5. With further

Table 1

The single gas atom di�usion coe�cient in UO2 under irradiation, F � 1013 ®ssions/(cm3 s) (after Turnbull [31])

T (°C) 800 1000 1100 1200 1300 1400 1500 1600 1700

Dg (cm2/s) 2 ´ 10ÿ17 8 ´ 10ÿ17 1.5 ´ 10ÿ16 4.5 ´ 10ÿ16 1.7 ´ 10ÿ15 6.3 ´ 10ÿ15 2 ´ 10ÿ14 5.8 ´ 10ÿ14 3.8 ´ 10ÿ13
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decrease of cg the critical point approaches to the other

intersection point I (which determines the steady size of

bubbles), and ®nally coincides with this point, Fig. 6.

This situation corresponds to the ®nal state of the

bubble system evolution, stabilised with respect to both

the bubble size and density number under steady irra-

diation conditions.

Indeed, since the range of the bubble size growth

(between points III and I in Fig. 5) reduces to zero

(Fig. 6), the bubble radius is completely stabilised. Since

this radius corresponds to the critical nucleus, on the

one hand, and signi®cantly exceeds the interatomic dis-

tance, on the other hand, the probability of new bubbles

generation at this stage is exponentially small. More-

over, if one assumes that new bubbles nevertheless ap-

pear after some long period of time, the subsequent

reduction of the gas atom concentration cg leads to the

separation of the nodal lines (dashed line in Fig. 6) and

to the disappearance of the critical point (i.e. the critical

nucleus size). In its turn, this immediately leads to the

initiation of the bubbles resolution, the cg increase, and

the recreation of the stabilised state of the system. It is

worthwhile to note that such a state is rather similar to

the state described by the Lifshitz±Slyozov point in the

theory of the late stage precipitation and thermal

coarsening in solid solutes [37]. Therefore, the given

quasi-stationary state is stable and corresponds to a late

stage of steady irradiation when all the generated ®ssion

gas atoms di�use to the grain boundaries without cap-

ture by the stabilised (with respect to the bubble size and

number) system of the intergranular bubbles.

Exact numerical calculations of the two nodal lines

(in the Van-der-Waals approximation for gas atoms in

bubbles) are presented in Figs. 7±10 and completely

con®rm the above presented qualitative consideration

(based on the ideal gas law) illustrated in Figs. 5 and 6.

4.3. Bubble nucleation mechanism at high temperatures

As indicated above, nucleation of bubbles is observed

only at a relatively high gas concentration ~cg � 3 ´ 10ÿ4,

when the critical nucleus size Rcr� 2c/(cgps/cs) becomes

less than the minimum stable bubble (N� 2) size

R� (3X/p)1=3. At 1400°C this value ~cg � 3 ´ 10ÿ4 (at-

tained after � 106 s of irradiation) exceeds the stabilised

value cg* � 3 ´ 10ÿ5 attained later (after 107±108 s) and

determined by Eq. (27). This means that after �105 s of

irradiation (when the ®nal concentration �3 ´ 10ÿ5 was

initially reached) bubbles were unable to nucleate (since

the critical nucleus radius was too large, Rcr � 1 nm) and

the gas concentration continued to increase until the

critical nucleus size was reduced to (3X/p)1=3 � 0.3 nm.

There upon the gas concentration in the matrix began to

fall down owing to nucleation and growth of bubbles,

Fig. 5. Nodal lines in the high temperature case (T P 1500°C)

with account of the thermal resolution of gas atoms from

bubbles. Saddle point III corresponds to the critical nucleus.

Fig. 6. Nodal lines in the case of the two critical points I and III

coincidence, corresponding to stabilisation of bubble size and

number under steady state irradiation conditions at

T P 1500°C.

Fig. 7. Numerical calculation of the two nodal lines and one

critical point I at T � 1500°C and high gas atom concentration,

cg� 10ÿ3 (other parameters: Dg� 10ÿ14 cm2/s, Kg� 10ÿ5 sÿ1).
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until the stabilised value cg* was ®nally attained. Such a

behaviour at high temperatures (with somewhat de-

creasing ~cg� 2c(p/3X)1=3(ps/cs)
ÿ1, owing to the Arrhenius

dependence of ps/cs on temperature) di�ers qualitatively

from that at lower temperatures (see Fig. 11), since at

T < 1200°C the gas concentration in the matrix monot-

onously increases up to the ®nally stabilised value

(which is P 3 ´ 10ÿ4, according to Eq. (27)), corre-

sponding to a small critical nucleus size, Rcr� 0.3 nm.

For this reason, at high temperatures in the stage of

the gas concentration decrease, bubble nucleation occurs

with some activation energy according to the Volmer±

Zeldovich mechanism [37]. Correspondingly, the bubble

nucleation process at T > 1200°C becomes more hetero-

geneous with the temperature increase and can be asso-

ciated with the increased e�ciency of ®ssion particle

tracks as probable nucleation sites. This is in accordance

with electron microscopy observations [20,31] of the in-

creasing amount of bubbles on tracks with temperature

(from�10% at 1500°C [31] up to �100% at 1800°C [20]).

Naturally, under conditions of a ®nite size of the

critical nucleus the description of the bubble formation

by the constant nucleation factor FN (considered in

Section 3.1.1) becomes invalid, and the correct descrip-

tion has to be based on the calculation of the activation

barrier Ea for the ¯uctuation formation of the critical

nucleus, FN µ exp()Ea/kT).

4.4. Thermal coarsening of bubbles during post-irradiation

annealing

A relatively rapid growth of the intragranular bub-

bles owing to the gas atom di�usion from the solid

matrix is usually observed during high temperature an-

nealing of irradiated fuel [29,33]. A noticeable decrease

(by several orders of magnitude) of the bubble number

density occurs simultaneously with the bubble size in-

crease. This process of the bubble number decrease in

the currently existing models (codes) is usually associ-

ated with the Brownian motion of the bubbles leading

to their coagulation (via direct collisions) into larger

ones in the grain bulk and transport to the grain

boundaries. However, even a simple evaluation of the

Fig. 11. Schematic representation of the concentration cg evo-

lution with time under steady irradiation at various tempera-

tures.

Fig. 9. Numerical calculation of the two nodal lines and two

coinciding critical points I and III at T � 1500°C and

cg� 2.5 ´ 10ÿ5, corresponding to the bubble system stabilisation

(other parameters: Dg� 10ÿ14 cm2/s, Kg� 10ÿ5 sÿ1).

Fig. 10. Numerical calculation of the nodal lines and critical

points at T � 1500°C: the same as Fig. 9, but Kg� 10ÿ4 sÿ1 and

cg� 5 ´ 10ÿ5.

Fig. 8. Numerical calculation of the two nodal lines and two

critical points I and III at T � 1500°C and cg� 4 ´ 10ÿ5 (other

parameters: Dg� 10ÿ14 cm2/s, Kg� 10ÿ5 sÿ1).
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experimental data shows that a rather low mobility of

the bubbles at T 6 1800°C measured in [13] does not

allow a correct description of the bubble sizes and

number densities observed in the annealing stage. For

this reason, additional mechanisms of the bubble dif-

fusivity increase under annealing conditions should be

invoked (and will be published elsewhere). A comple-

mentary mechanism of the bubble growth under an-

nealing conditions can be associated with the thermal

e�ects, discussed in the current Section 4 and generally

unaccounted in the standard analysis of the bubble

system behaviour.

Indeed, in the absence of irradiation (K ® 0 in

Eq. (12)), the subsystem of point defects (vacancies and

interstitials) attains rather quickly its equilibrium state

(cv;i� ceq
v;i) in the annealing stage. This relaxation time at

the annealing temperature 1500°C can be estimated

from Eq. (12) as seq � (Dvk2
v)ÿ1 � 10ÿ1±10ÿ2 s, where

Dv � 10ÿ9±10ÿ10 cm2/s is the thermal value of the

vacancy di�usion coe�cient [26]. A slower process of

bubble growth occurs owing to the gas atom and point

defect di�usion transport to bubbles. Since Dgcg�Du,

where Du � 10ÿ16±10ÿ15 cm2/s is the thermal value of the

uranium self-di�usion coe�cient, the gas transport de-

termines the bubble growth rate during the annealing

stage. During this growth, extended defects such as

dislocation loops, grain boundaries, etc. serve as sources

for vacancies (necessary for the bubble growth) and af-

ford the equilibrium concentration of the point defects

in the crystal bulk. This may explain the observed dis-

location creep and enhanced bubble growth by disloca-

tion sweeping under annealing conditions [17]. Despite a

relative slowness of this process (in comparison with

thermalisation of point defects), sinking of gas atoms

into bubbles may occur during a few minutes or seconds

at high temperatures. Hence, under conditions of the

tests [29,33], in which fuel samples irradiated at T �
900°C [33] and 700°C [29] to a burnup of �2 ´ 1020 ®s-

sions/cm3 were annealed at T� 1500°C during 5 h, the

characteristic time ss of di�usional sinking of gas atoms

into bubbles is estimated as ss � (Dgk2
v)ÿ1 � 102 s.

Neglecting the thermal resolution term in Eq. (27),

one obtains that the gas atom concentration cg falls

down practically to zero during the time interval 6 103 s

of the annealing stage. In reality, however, the critical

nucleus radius Rcr� 2c/[cg(ps/cs)] increases along with cg

decrease and attains the mean value of the bubble radius

R at some small but ®nite value of cg (�10ÿ5 according

to estimations in Section 4.2). There upon the rapid

di�usion sinking of gas atoms into bubbles ceases and a

slower process of the bubble thermal coarsening (Ost-

wald ripening) commences. This process is qualitatively

equivalent to the late stage precipitation in solid solutes

described by the Lifshitz±Slyozov theory [37] and cor-

responds to a slow growth of the `supercritical' bubbles

(R P Rcr) and dissolution of `subcritical' bubbles

(R 6 Rcr), a�ording a simultaneous increase of the mean

bubble radius R and the critical radius Rcr with Rcr � R.

It should be emphasised that the analogy between the

considered case of the bubbles growth and the Lifshitz±

Slyozov model turns to be very close until bubbles are

su�ciently small. Indeed, small bubbles with R� 5 nm

are strongly pressurised and thus satisfactorily described

by the high-pressure limit expression for the Van-der-

Waals gas: Xg � b, where Xg is the speci®c volume of gas

atoms in a bubble, b � 2X is the Van-der-Waals con-

stant (see Eq. (8)). For this reason, the di�usional

growth of a small bubble is described by the equation

dR=dt � Dgcgb�Rÿ Rcr�=R2 � �2Dg=R��Dÿ r=R�; �30�

where D� (b/2X)cg � cg, r� (b/2X)cgRcr � cgRcr� 2c(ps/

cs)
ÿ1. This equation is similar to the corresponding

equation in the Lifshitz±Slyozov theory, allowing direct

application of these theoretical results to the considered

case of the small bubbles growth.

However, it should be taken into consideration that

for larger bubbles, R � 5 nm, the gas state equation,

Eq. (8), is more complicated and the bubble growth

equation, Eq. (30), correspondingly changes its form. In

the low pressure limit (large bubbles) when the Van-der-

Waals equation transforms into the ideal gas law, the

bubble growth equation takes the form

dR=dt � Dgcg�1ÿ Rcr=R�kT=2c

� Dg�Dÿ r=R�kT=2c; �31�

which has a di�erent power dependence on R in the

r.h.s., loosing the analogy with the Lifshitz±Slyozov

theory. For this reason, one should expect also an other

power dependence on time in the ®nal asymptotic for-

mulas of the theory.

For the semi-quantitative analysis of the experiments

[33,29] in which the mean bubble radius increased up to

�2±5 nm [33] and 2.5±3.3 nm [29] during the annealing

stage, one should take into account that the formal

application of the Lifshitz±Slyozov theory results is only

partially valid (until R� 5 nm). For the further ana-

lytical consideration this limitation will be ignored,

keeping in mind that such a simpli®ed procedure allows

only a rough evaluation of the ®nal system state.

The above introduced parameters D, r and Rcr

completely determine the long-term asymptotic behav-

iour of the system. The characteristic time scale of the

thermal coarsening problem is

s� � R3
cr�0�=Dgr;

where Rcr(0) is the critical radius value in the beginning

of this stage, t� 0. Since the thermal coarsening com-

mences when Rcr � R, the value Rcr(0) can be satisfac-

torily estimated as �1 nm (see Section 4.2). Using the

above estimated value of (ps/cs) � 3 ´ 1013 Pa and Dg �
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2 ´ 10ÿ14 cm2/s, one obtains r � 0.5 ´ 10ÿ11 cm and the

characteristic time scale s� � 5 ´ 103 s. Since the an-

nealing time (1.8 ´ 104 s) is somewhat larger than this

time scale, the asymptotic expressions of the Lifshitz±

Slyozov theory derived in the limit t� s� can be used for

the approximate description of the ®nal state of the

bubble system:

qb�t� � 0:5Q=2Dgrt; �32�

where qb is the intragranular bubble number density, Q

is the total concentration of gas atoms in the bulk of the

grain in the thermal coarsening stage (including gas at-

oms both in the grain matrix and in the intragranular

bubbles), and

R � �8rDgt=9�1=3
: �33�

Since the ®ssion gas release at T� 900°C [33] and 700°C

[29] in the irradiation stage of the tests was negligibly

small (in comparison with the total generated amount of

� 5 ´ 1019 atoms/cm3) and the grain boundary bubbles

had a rather small number density, practically all gen-

erated gas was in the bulk of the grains (in the matrix

and intragranular bubbles) at t� 0, corresponding to Q

� 2 ´ 10ÿ3. Therefore, according to Eqs. (32) and (33) in

the end of the annealing stage (t � 1.8 ´ 104 s) the bubble

number density and the mean bubble radius attain the

values q�f �b � 2.5 ´ 1017 cmÿ3 and R
�f �� 1.2 nm, in no-

ticeable disagreement with the measured values q�f �b �
2.4 ´ 1016 cmÿ3 and R� 2±5 nm.

However, an agreement can be much better if one

takes into consideration that during the initial stage of

annealing, ss 6 103 s, a signi®cant reduction of the gas

atom concentration cg occurs. Simultaneously such de-

fects as vacancy clusters (up to several nm in diameter,

6Duss), stacking fault tetrahedra, etc. which were

formed under irradiation damage and a�orded strong

trapping of gas atoms [14], are recovered during this

time interval. In this case the di�usion coe�cient of gas

atoms may signi®cantly increase and approach to its

`unperturbed' value measured in the tests with low

damage and gas concentration [14,27]. At 1500°C, the

unperturbed di�usion coe�cient is about 4 ´ 10ÿ12 cm2/s

[14], hence, using an intermediate value for Dg in the

range between two limiting values, 2 ´ 10ÿ14 and

4 ´ 10ÿ12 cm2/s (say, Dg � 2 ´ 10ÿ13 cm2/s), one can get an

excellent agreement for the calculated bubble size (R
�f � �

2.6 nm) and number density (q�f �b � 2.5 ´ 1016 cmÿ3) with

the measurements [29,33]. Further improvement can be

attained if bubble collisions will be additionally taken

into consideration. In this case thermal coarsening oc-

curs simultaneously with the bubble coagulation process

and thus results in increased bubble sizes and decreased

bubble number densities.

With the increase of annealing time and temperature,

the e�ect of thermal coarsening becomes more pro-

nounced. Indeed, in this case the mean bubble radius

can exceed the above mentioned value 5 nm, and the

bubble radius growth will occur much quicker in ac-

cordance with Eq. (31). Under the main condition of the

Lifshitz± Slyozov theory, Rcr � R, it is straightforward

to show that Eq. (32) conserves its form:

qb�t� / Q=rDgt;

whereas Eq. (33) transforms into a new one:

R
2 / t�DgrkT=cX�;

corresponding to a more rapid radius growth. In this

case after annealing at 1500°C during 72 h the mean

bubble diameter can increase up to 100 nm in accor-

dance with observations [38].

Generally, on the base of the above presented qual-

itative analysis one can conclude that the thermal reso-

lution process becomes essential for the description of

the annealing tests, and additionally con®rms the ne-

cessity of the corresponding thermal term introduction

in the code equations (e.g. the third term in the r.h.s. of

Eq. (29)).

5. Intergranular porosity

As in the case of the intragranular porosity (see

Section 2.1), the evolution of the intergranular porosity

is usually considered in the quasi-stationary approxi-

mation of mechanical equilibrium bubbles (e.g. [1±

3,9,39,40]. Such an approximation is based on the the-

oretical work [41], in which the kinetics of the inter-

granular bubble growth determined by the di�usional

¯ux of the grain boundary vacancies was considered.

According to [41], the grain boundary vacancy ¯ux is

evaluated as

Jg:b: � �2pw=L�Dg:b:
v �ceq

v ÿ cv�q��
� �2pw=L�Dg:b:

v ceq
v f1ÿ exp ��p ÿ ph ÿ 2c=q�X=kT �g

� ÿ�2pw=L�Dg:b:
u �p ÿ ph ÿ 2c=q�X=kT ; �34�

where Dg:b
v

: is the grain boundary vacancy di�usion co-

e�cient, Dg:b
u

:�Dg:b
v

:ceq
v is the grain boundary self-di�u-

sion coe�cient, w is the boundary thickness, q is the

radius of curvature of the pore, L � 1 is a function of the

fraction of the grain boundary area occupied by pores;

thus, the quasi-stationary state (Jg:b :� 0) corresponds to

the mechanically stable bubble:

p ÿ ph ÿ 2c=q � 0: �35�
However, applying these results to the UO2 fuel it

was generally ignored that the original model [41] did

not consider an irradiated crystal. Under non-equilibri-

um conditions of the irradiated crystal the vacancy

concentration in the grain bulk may be so high that the
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vacancy ¯ux Jg from the interior of the grain to the

boundary exceeds the grain boundary vacancy ¯ux Jg:b :.

In order to determine the applicability range of the

standard approach, one should compare the two ¯uxes.

In accordance with Eq. (4):

Jg � 4pqDvcvf1ÿ bi=bv ÿ �ceq
v =cv�

exp ��p ÿ ph ÿ 2c=q�X=kT �g
� 4pqDvceq

v ��1ÿ bi=bv��cv=ceq
v �

ÿ 1ÿ �p ÿ ph ÿ 2c=q�X=kT �; �36�

thus, the ratio of the two ¯uxes is

Jg:b:=Jg � �Dg:b:
u =Du��w=q���p ÿ ph ÿ 2c=q�X=kT �=

�1ÿ �1ÿ bi=bv��cv=ceq
v �

� �p ÿ ph ÿ 2c=q�X=kT �: �37�

As demonstrated above, the radiation e�ects become

negligible at T P 1500°C (in comparison with the

thermal ones), and (1 ) bi/bv)(cv/ceq
v ) � 1. Therefore,

since the value (Dg:b
u

:/Du) � 105 is extremely large [42],

Jg:b:/Jg� 1 and the approach of [41] can be reliably ex-

tended also to the case of the irradiated fuel at

T P 1500°C.

However, at lower temperatures, T < 1500°C the

expression (1 ) bi/bv)(cv/ceq
v ) becomes >1, thus, Jg ¹ 0

when p)ph)2c/q� 0, and the above mentioned quasi-

stationary condition Jg:b:� 0 leads to Jg:b:/Jg ® 0. This

means that in reality the bubble state determined by the

capillarity relation Eq. (35) is not stationary but corre-

sponds to the bubble growing due to the di�usional ¯ux

of the point defects from the bulk of the grain. There-

fore, for instance at 1200°C, when (1 ) bi/bv)(cv/

ceq
v ) P 10, for large bubbles with q P 102 nm the con-

dition Jg:b :/Jg > 1 is valid only for p ) ph P 10 ´ (2c/q),

whereas for q P 1 lm it is only for p ) ph P 102 ´ (2c/q).

It is quite clear that in such a situation both processes

of the bulk and grain boundary point defect di�usion

should be considered self-consistently in order to des-

cribe the evolution of large intergranular bubbles (with

q�10 nm). Such a consideration shows that the bulk

di�usion starts to dominate already at 1300±1400°C,

This allows the description of the large intergranular

bubble evolution by a line of the type represented by the

dashed line in Fig. 3. Indeed, since the internal pressure

in such bubbles is rather small (in comparison with the

capillary one, see Section 2.3.2), then, as seen from

Eq. (37), the grain boundary vacancy ¯ux turns to be

really negligible in comparison with the bulk one.

Hence, for instance at 1300°C, [(2c/q))p]X/kT � (2c/q)

X/kT � 10ÿ2 for q � 1 lm; therefore, Jg:b :/Jg � 10ÿ1. The

maximum size of bubbles growing by the grain boun-

dary di�usional mechanism also quickly decreases with

the temperature decrease. Thus, the growth of all the

intergranular bubbles with q > 10 nm can be described at

temperatures below 1100°C neglecting the grain boun-

dary vacancy di�usion ¯ux, i.e. the standard approach

based on the equilibrium crystal model [41] is not valid

in this temperature range.

Since in this case (corresponding to the dashed line in

Fig. 3) the kinetics of the bubble size growth are deter-

mined by the point defect ¯ux rather than by the gas

atom ¯ux (as it was in the standard approach, see Sec-

tion 2.3.2), the bubble growth rate becomes signi®cantly

higher. For the same reason, the internal pressure in

such bubbles is rather low (in comparison with the

capillary one). Both these factors can lead to a signi®-

cant underestimation of the value and rate of the fuel

swelling by the standard models, and can radically

change the behaviour of the system even qualitatively.

For instance, during formation of the open porosity on

the grain faces, the channels formed by the bubble

chains will practically conserve their form after the gas

release from these bubbles (see dash±dotted line in Fig. 3)

and will not shrink (as in the models for the `capillary'

bubbles, e.g. [9]). This in its turn will additionally in-

crease the gas release rate from the fuel.

6. Conclusions

In the present paper the standard approaches for

modelling of the inter- and intragranular bubbles evo-

lution in the UO2 fuel are critically analysed on the basis

of the available experimental data. It is demonstrated

that the main source of errors in the simpli®ed treatment

of the problem by the standard models can be associated

with the underestimation of

· the radiation e�ects at temperatures below �1500°C

(where these e�ects dominate over the thermal ones);

· the thermal e�ects at temperatures above �1500°C

(where these e�ects dominate over the radiation

ones).

At low temperatures (6 1500°C) the generally ac-

cepted quasi-stationary approximation based on the

capillarity relation for growing bubbles fails, since non-

equilibrium point defects generated in the fuel under

irradiation conditions signi®cantly change the behaviour

of growing bubbles at these temperatures, especially in

the case of large bubbles formed on the grain faces or

during transients in the bulk of the grains. In particular,

this may lead to a signi®cant underestimation of the

value and rate of the fuel swelling. On the other hand,

the presented analysis of the defect structure evolution

allows a quantitative description of the bubble nucle-

ation mechanism, as well as the evaluation of the bubble

number density and stable size attained under steady

irradiation conditions.

At high temperatures ( P 1500°C) the thermal reso-

lution of gas atoms from bubbles generally unaccounted

in the standard models, becomes the dominant process

leading to a signi®cant increase of the critical nucleus of
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bubbles and, as a result, change of the mechanism and

kinetics of the bubble generation. On the other hand, a

self-consistent consideration of the thermal and radia-

tion-induced resolution processes allows a natural ex-

planation and a quantitative description of the bubble

size and the number stabilisation observed also at high

temperatures under steady irradiation conditions. Under

post-irradiation annealing conditions the thermal

mechanism determines coarsening (Ostwald ripening) of

bubbles and allows a satisfactory description of the high

temperature annealing tests.
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